
Performance and Scaling of Locally-Structured Grid
Methods for Partial Differential Equations

Phillip Colella, Noel Keen, Terry Ligocki, Brian van Straalen
Applied Numerical Algorithms Group, LBNL

John Bell, Mike Lijewski
Center for Computational Sciences and Engineering, LBNL

SciDAC Applied Partial Differential Equations Center for
Enabling Technologies (APDEC)



Multiscale Problems and Multiresolution Methods
• A broad range of applied PDE problems exhibit multiscale behavior.

– Combustion: flames.
– Astrophysics and cosmology: galaxy / star formation, nuclear burning.
– Geophysical fluid dynamics: localized currents, orography / bathymetry,

tropical cyclones.
– Plasma physics: kinetic models of plasmas; nonlinear MHD instabilities of

various kinds; fueling an MFE reactor.
– Subsurface flows: geological features, fronts.

• Typically, these are represented mathematically by various
combinations of PDE of classical type (elliptic, parabolic, hyperbolic). To
effectively compute solutions to such problems, we need to meet the
following requirements.
– Multiresolution / adaptive methods: discretization methods that locally adjust

the resolved length scales as a function of space, time, and the solution.
– Semi-implicit or fully-implicit methods for computing long-time dynamics in

the presence of stiff fast dynamics.
– High-performance, scalable implementations.



Block-Structured Adaptive Mesh Refinement (AMR)
• Refined regions are organized into rectangular patches.

• Refinement in time as well as in space for time-dependent problems.
• Local refinement can be applied to any structured-grid data, such as bin-sorted
particles.



An AMR Software Framework
• The BoxLib / Chombo libraries support a wide variety of

applications that use AMR by means of a common software
framework.
– Mixed-language programming: C++ for high-level abstractions,

Fortran for calculations on rectangular patches.
– Reuseable components, based on mapping of mathematical

abstractions to classes. Components are assembled in different
ways to implement different applications capabilities.

– Layered architecture, that hides different levels of detail behind
interfaces.

• In this approach, high performance is obtained by optimizing
components, but in the context of specific applications usage
patterns. Leads to demand-driven performance optimization.

• For the applications we are supporting, implicit methods (and
hence solvers) are essential.



AMR Programming Model

• Domain decomposition that assigns rectangular patches to processors. All
processors have access to processor assignment metadata. Distributed grid
data built on top of these metadata.

• Local computation: iterate over patches owned by processor. Processor has
access only to local data.

• Communication primitives: exchange of ghost cell data, copying from a
disjoint union of rectangles to some other union of rectangles.

• Interlevel operations: interpolating boundary data, averaging / interpolation
between levels combine communication and irregular computation.



Performance / Scalability: Top Level Questions

• How does one understand and improve the performance of AMR
algorithms and software (both scaling and absolute
performance)?

• Under what circumstances does AMR provide the best scientific
results for the least cost (Science / Megawatt-Hour)?

• How do we design a benchmark suite that encapsulates the
usage patterns for a broad range of applications?

• Does AMR scale ?



Understanding Scalability and Performance



Defining Scalability, Performance
• For many PDE applications, scalability ´

weak scalability.
– Use minimum number of processors so

that the problem will fit into memory. Flops
are free, memory is expensive.

– Any speedup obtained by increasing
processor count beyond that point is often
lost due to realities of a multiuser
environment.

– Real-time applications, e.g. numerical
weather prediction, are counterexamples.
Even in those applications, weak scaling
studies are good at exposing bottlenecks.

• Under weak scaling, Amdahl’s law is
replaced by much less restrictive
conditions on load balancing: for
example, a bound on the execution time
per patch independent of the number of
processors.

tmin · tpatch · tmax 
M= Npatches/Nprocs



Defining Scalability, Performance
• Operator peak performance: maximum performance for

evaluating an operator on a uniform grid on a single processor.
For stencil operations, this has been typically 10%-20% of the
nominal peak. We assess performance in terms of a fraction of
operator peak performance.

• Adaptivity factor: ratio of the time to perform the calculation on a
uniform grid at the finest resolution to the time to solution for the
AMR calculation. The former is generally estimated from smaller
runs and assuming perfect weak scaling, rather than computed
directly.

• Implementation efficiency: what fraction of time is spent on
regular computation (e.g. in Fortran77 or other optimized single-
patch operations). For the examples described here,
implementation efficiency is very close to the fraction of operator
peak performance.



Replication Scaling Benchmarks
• Take a single grid hierarchy, and scale

up the problem by making identical
copies. Full AMR code (processor
assignment, remaining problem setup)
is done without knowledge of
replication.
– Good proxy for some kinds of

applications scaleup.
– Tests algorithmic weak scalability and

overall performance.
– Does not test load balancing.
– Avoids problems with interpreting

scalability of more conventional mesh
refinement studies with AMR.

– Variations: random offsets of images;
replicate the set of cells tagged as
needing refinement.



AMR Gas Dynamics Benchmark
• Unsplit PPM solver - 6K flops / grid point

to update a cell. Explicit method, so ghost
cell values copied / interpolated only once
per update. Easiest case.

• Single image is a spherical shock tube in
3D, with finest grids covering a spherical
shell.Two levels of refinement, factor of 4
each. Refinement in time proportional
refinement in space. Fixed-sized
(16x16x16) patches. Five unknowns / cell,
62M grid points, with1B grid point updates
performed per coarse time step.

• Operator peak performance on XT4 is
530 Mflops / processor.

• Timing only the update step - no
initialization, regridding, etc.

• Results obtained with hyperbolic code
“out of the box” from Chombo distribution.



Gas Dynamics Benchmark:Results
• 96% efficient scaled speedup

over range of 128-8192
processors (173-181
seconds).

• Fraction of operator peak:
85% (450 Mflops / processor).

• Adaptivity factor: 16.
• Outstanding issues: small

fluctuations in scaling,
somewhat lower single-
processor performance than
expected.

Scaling of AMR for explicit
methods is relatively easy.



AMR Poisson Benchmark
• Multilevel discretization of Laplacian,

with AMR multigrid algorithm used as
solver. 10 iterations of AMR-MG V-
cycle = 1700 Flops / grid point. Over
100 calls to communication (exchange /
copyTo) per iteration. Typical of broad
range of elliptic solvers on AMR grids.

• Single image is two rings. Two levels of
refinement, factor of 4 each. Patch size
is allowed to vary between 8^3 and
32^3. One unknown per cell, total of
15M grid points per image.

• Operator peak performance on XT4 is
840 Mflops / processor.

• Timing only the solver - no initialization.
• Results obtained after significant effort

in code optimization (2 months), leading
to 10X improvement in per-processor
performance and in scalability.



Poisson Benchmark:Results
• 87% efficient scaled speedup

over range of 256-8192
processors (8.4-9.5 seconds).

• Fraction of operator peak: 45%
(375 Mflops / processor).

• Adaptivity factor: 48 (estimated).
• Principal bottleneck: level 0

BiCGStab. Level 0 grids are
coarsened down to where
domain is covered by a
collection of 2x2x2 patches,
each on a different processor.
This problem is easy to fix.

Development of scalable Poisson solvers is
one of the most challenging goals for AMR.
How did we accomplish this ?

Regular



Minimizing Communications Costs

• Distributing patches to processors to
maximize locality. Sort the patches by
Morton ordering, and divide into equal-
sized intervals.

• Overlapping local copying and MPI
communications in exchanging ghost-cell
data (only has an impact at 4096, 8192).

• Exchanging ghost-cell data less
frequently in point relaxation.

Morton-ordered load balancing
(slice through 3D grids).

Berger-Rigoutsos + recursive
bisection.



Metadata, Irregular Computations
• Every processor has a copy of the metadata (assignment of patches

to processors) for all unions of rectangles / processor assignments.
These are used to compute intersection lists, e.g. from which
patches ghost-cell data is copied.
– Storing the metadata (not an issue except for the largest problems).
– Fast sorts / searches to compute intersection lists - otherwise,

catastrophic failure to scale due to O(Npatch)2 computations.
– Caching intersection lists.

• Coarse-fine boundary conditions involve parallel communication and
irregular computation.
– Use of residual-correction form to minimize how often they are called.
– For stencils that are actually regular, call Fortran. Could also use fixed-

size patches to make such calculations regular, or develop fast irrefular
stencil operations.

– Cache stencil communications data (copiers).



Algorithm Choices: A Case Study



AMR Low-Mach-Number Combustion (LMC) Algorithm

• Discretization of the Ma ! 0 fluid
equations with detailed hydrocarbon
chemistry and transport. For
methane (GRIMech 3.0, EGLib), 60
unknowns per grid point.

• Used to investigate a variety of
turbulent flames. Extensions to
simulate syngas combustion,
nuclear burning in supernovae.

• Computational time dominated by
solving ODEs at every grid point for
chemistry using an implicit solver.
Single-level variable-coefficient
elliptic solvers to impose divergence
constraint that replaces acoustic
wave dynamics. The latter use
multigrid-preconditioned BiCGStab.



LMC Benchmark

• For Nproc · 1024, the cost of the
computation is dominated by the
cost of solving the chemical rate
equations. By rebalancing the data
for this task on the fly, this part of the
computation scales perfectly.

• Variable-coefficient elliptic solvers
used here are leading to a loss of
weak scaling of the whole
application for larger numbers of
processors.

• Similar scaling results obtained on a
Linux cluster, and on an SGI system
(NASA Columbia).

• LMC Replication Benchmark: Single image is a wrinkled flame. Two levels
of refinement, factor of 2 each, refinement in time. Total of 4M grid points.

4 Million 256 Million



LMC vs. Fully Explicit Method

• Fully explicit method for viscous compressible flow on a uniform
grid:
– Explicit stencil operations scale perfectly.
– Time step is determined by CFL condition for acoustic waves (.02 µ

sec).
– For chemistry, use explicit ODE method, subcycle in time as needed.

• LMC:
– Elimination of acoustic waves leads to a 50X increase in the time step

(1 µsec). This comes at the cost of introducing elliptic solvers and the
accompanying loss of ideal scaling.

– AMR provides 10X reduction in the number of grid points over a
uniform fine grid with the same resolution.

– Chemistry ODEs integrated with an implicit solver.

• Algorithmic choices are driven by science requirements: of the available
alternatives, which is going to provide the most scientific output for the least
cost ? To address this question, we compared LMC to a version of what has
been the standard approach to solving these problems for the last 20 years.



LMC vs. Fully Explicit Method

• Improvement by a factor of
200-250 in time to solution
by using LMC over fully
explicit method on a
uniform grid at the same
effective resolution.

• Deviation from scalability is
a miniscule effect relative
to the difference between
the approaches.

Green: fully explicit method.
Red: LMC.



Future Plans



Outstanding Issues at 10K Processors
• Parallel grid generation (Gunney, et. Al., LLNL; fixed-size patches).
• Analysis tools for weak scaling load balance.
• Propagation of fast intersection calculations into entire library.

Scalability of setup process.
• Scalability of level solvers for variable-coefficient elliptic problems.
• Design of solver performance test suite that spans the usage patterns

for full range of applications:
– Grid layouts (e.g. cosmology vs. combustion).
– Choice of operators (variable coefficient, tensor, high-order).
– Level solvers vs. multilevel hierarchies.
– Metrics: those given above, plus memory usage, setup time.
– Make benchmarks accessible to larger solver community.

• Complex geometries using embedded boundaries. Load balancing
based on run-time measurements (already done in LMC).

• Anisotropic solvers / problems (Sn radiation, GFD, thermal conduction
in MHD). Line solves $ loss of parallelism in that direction.



Potential Issues at ¸ 100K Processors
• Good news: We still have plenty of parallelism left to exploit,

particularly on multicore/manycore architectures.
• Representation of patch metadata. Current implementation

uses ~50 Bytes / patch, which too large for 1M patches or
more. Possible approaches include:
– Minimum storage representation: bitmap (1 bit / patch), + one long-

long per processor ! 2 MB for 100K processors.
– Distribute patch metadata over multiple processors. For manycore

nodes, store one copy of the metadata per node.
• Parallel load balancing algorithm, based on bitmap

representation. Exploit the recursive structure of Morton
ordering to do divide-and-conquer.



Computing Environment at the Petascale

• Does MPI scale to a flat 100K
processor space ?

• Production-quality
implementations of hierarchical
programming models for
multicore/manycore systems.

• I/O. Visualization and analytics.
Mass storage.

• Above 1000 processors,
multiuser environments and other
artifacts can lead to unpredictable
fluctuations in performance.

• Adequate access to large
numbers of processors for library
development.

The spikes correspond to specific
physical nodes and are due to correction
of single-bit memory errors on those
nodes (A. S. Bland, ORNL). After this
problem was corrected, we obtained the
scaling results given in the previous
slides.



Conclusions
• AMR scales to 10K processors with per-grid-point performance

comparable to the corresponding uniform-grid algorithms. We
see no serious technical barriers specific to AMR to scaling to
100K processors and beyond.

Developers and users need to be convinced that attempting to
scale beyond 10K processors will yield real science returns in a
timely fashion.

• Due diligence and attention to details is necessary and sufficient
for the development of scalable AMR software (provided the
other resources are there).

• The development of such software components should be
driven by the requirements of applications.

• An suitably-designed AMR framework is essential for
performance tuning.


